Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Front Genet ; 15: 1320161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343694

RESUMO

Leprosy, or Hansen's Disease, is a chronic infectious disease caused by Mycobacterium leprae that affects millions of people worldwide. Despite persistent efforts to combat it leprosy remains a significant public health concern particularly in developing countries. The underlying pathophysiology of the disease is not yet fully understood hindering the development of effective treatment strategies. However, recent studies have shed light on the potential role of microRNAs (miRNAs), small non-coding RNA molecules that can regulate gene expression, as promising biomarkers in various disease, including leprosy. This study aimed to validate a set of nine circulating miRNAs to propose new biomarkers for early diagnosis of the disease. Hsa-miR-16-5p, hsa-miR-106b-5p, hsa-miR-1291, hsa-miR-144-5p, and hsa-miR-20a-5p showed significant differential expression between non-leprosy group (non-LP) and leprosy group (LP), accurately discriminating between them (AUC > 0.75). In addition, our study revealed gender-based differences in miRNA expression in LP. Notably, hsa-miR-1291 showed higher expression in male LP, suggesting its potential as a male-specific biomarker. Similarly, hsa-miR-16-5p and hsa-miR-20a-5p displayed elevated expression in female LP, indicating their potential as female-specific biomarkers. Additionally, several studied miRNAs are involved in the dysregulation of apoptosis, autophagy, mitophagy, cell cycle, and immune system in leprosy. In conclusion, the validation of miRNA expression highlights several miRNAs as potential biomarkers for early diagnosis and provides new insights into the pathogenesis of the disease.

2.
Microbes Infect ; : 105300, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38224943

RESUMO

Mycobacterium leprae infects skin and peripheral nerves causing a broad of clinical forms. MicroRNAs (miRNAs) control immune mechanisms such as apoptosis, autophagy as well as to target genes leading to abnormal proliferation, metastasis, and invasion of cells. Herein we evaluated miRNAs expression for leprosy phenotypes in biopsies obtained from patients with and without reactions. We also correlated those miRNAs with both, bacillary index (BI) and genes involved in the micobacteria elimination process. Our results show a significant increase in the miR-125a-3p expression in paucibacillary (PB) patients vs multibacillary (MB) subjects (p = 0.007) and vs reversal reactions (RR) (p = 0.005), respectively. Likewise, there was a higher expression of miR-125a-3p in patients with erythema nodosum leprosum (ENL) vs MB without reactions (p = 0.002). Furthermore, there was a positive correlation between miR-125a-3p, miR-146b-5p and miR-132-5p expression and BI in patients with RR and ENL. These miRNAS were also correlated with genes such as ATG12 (miR-125a-3p), TNFRSF10A (miR-146b-5p), PARK2, CFLAR and STX7 (miR-132-5p). All together we underpin a role for these miRNAs in leprosy pathogenesis, implicating mechanisms such as apoptosis and autophagy in skin. The miR-125a-3p might have a distinct role associated with PB phenotype and ENL in MB patients.

3.
Pathogens ; 12(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133338

RESUMO

BACKGROUND: Mycobacterium leprae is an intracellular bacillus that causes leprosy, a neglected disease that affects macrophages and Schwann cells. Leprosy reactions are acute inflammatory responses to mycobacterial antigens, classified as type1 (T1R), a predominant cellular immune response, or type2 (T2R), a humoral phenomenon, leading to a high number of bacilli in infected cells and nerve structures. Xenophagy is a type of selective autophagy that targets intracellular bacteria for lysosomal degradation; however, its immune mechanisms during leprosy reactions are still unclear. This review summarizes the relationship between the autophagic process and M. leprae elimination during leprosy reactions. METHODS: Three databases, PubMed/Medline (n = 91), Scopus (n = 73), and ScienceDirect (n = 124), were searched. After applying the eligibility criteria, articles were selected for independent peer reviewers in August 2023. RESULTS: From a total of 288 studies retrieved, eight were included. In multibacillary (MB) patients who progressed to T1R, xenophagy blockade and increased inflammasome activation were observed, with IL-1ß secretion before the reactional episode occurrence. On the other hand, recent data actually observed increased IL-15 levels before the reaction began, as well as IFN-γ production and xenophagy induction. CONCLUSION: Our search results showed a dichotomy in the T1R development and their relationship with xenophagy. No T2R studies were found.

5.
Autophagy ; 18(1): 204-222, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34313548

RESUMO

CD38 is a cell surface receptor capable of generating calcium-mobilizing second messengers. It has been implicated in host defense and cancer biology, but signaling mechanisms downstream of CD38 remain unclear. Mutations in LRRK2 (leucine-rich repeat kinase 2) are the most common genetic cause of Parkinson disease; it is also a risk factor for Crohn disease, leprosy, and certain types of cancers. The pathogenesis of these diseases involves inflammation and macroautophagy/autophagy, processes both CD38 and LRRK2 are implicated in. Here, we mechanistically and functionally link CD38 and LRRK2 as upstream activators of TFEB (transcription factor EB), a host defense transcription factor and the master transcriptional regulator of the autophagy/lysosome machinery. In B-lymphocytes and macrophages, we show that CD38 and LRRK2 exist in a complex on the plasma membrane. Ligation of CD38 with the monoclonal antibody clone 90 results in internalization of the CD38-LRRK2 complex and its targeting to the endolysosomal system. This generates an NAADP-dependent calcium signal, which requires LRRK2 kinase activity, and results in the downstream activation of TFEB. lrrk2 KO macrophages accordingly have TFEB activation defects following CD38 or LPS stimulation and fail to switch to glycolytic metabolism after LPS treatment. In overexpression models, the pathogenic LRRK2G2019S mutant promotes hyperactivation of TFEB even in the absence of CD38, both by stabilizing TFEB and promoting its nuclear translocation via aberrant calcium signaling. In sum, we have identified a physiological CD38-LRRK2-TFEB signaling axis in immune cells. The common pathogenic mutant, LRRK2G2019S, appears to hijack this pathway.Abbreviations:ADPR: ADP-ribose; AMPK: AMP-activated protein kinase; BMDM: bone marrow-derived macrophage; cADPR: cyclic-ADP-ribose; COR: C-terminal of ROC; CTSD: cathepsin D; ECAR: extracellular acidification rate; EDTA: ethylenediaminetetraacetic acid; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GPN: Gly-Phe ß-naphthylamide; GSK3B/GSK3ß: glycogen synthase kinase 3 beta; GTP: guanosine triphosphate; KD: knockdown; LAMP1: lysosomal-associated membrane protein 1; LRR: leucine rich repeat; LRRK2: leucine rich repeat kinase 2; mAb: monoclonal antibody; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK/ERK: mitogen-activated protein kinase; MCOLN1: mucolipin 1; MFI: mean fluorescence intensity; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NAADP: nicotinic acid adenine dinucleotide phosphate; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine dinucleotide phosphate; PD: Parkinson disease; PPP3CB: protein phosphatase 3, catalytic subunit, beta isoform; q-RT-PCR: quantitative reverse transcription polymerase chain reaction; ROC: Ras of complex; siRNA: small interfering RNA; SQSTM1/p62: sequestome 1; TFEB: transcription factor EB; TPCN: two pore channel; TRPM2: transient receptor potential cation channel, subfamily M, member 2; ZKSCAN3: zinc finger with KRAB and SCAN domains 3.


Assuntos
Autofagia , Doença de Parkinson , Adenosina Difosfato Ribose/metabolismo , Anticorpos Monoclonais , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cálcio/metabolismo , Humanos , Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Lipopolissacarídeos/metabolismo , Lisossomos/metabolismo , NADP/análogos & derivados , NADP/metabolismo , Doença de Parkinson/metabolismo , Fatores de Transcrição
6.
Cells ; 10(9)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34571865

RESUMO

Leprosy reactional episodes are acute inflammatory events that may occur during the clinical course of the disease. Type 1 reaction (T1R) is associated with an increase in neural damage, and the understanding of the molecular pathways related to T1R onset is pivotal for the development of strategies that may effectively control the reaction. Interferon-gamma (IFN-γ) is a key cytokine associated with T1R onset and is also associated with autophagy induction. Here, we evaluated the modulation of the autophagy pathway in Mycobacterium leprae-stimulated cells in the presence or absence of IFN-γ. We observed that IFN-γ treatment promoted autophagy activation and increased the expression of genes related to the formation of phagosomes, autophagy regulation and function, or lysosomal pathways in M. leprae-stimulated cells. IFN-γ increased interleukin (IL)-15 secretion in M. leprae-stimulated THP-1 cells in a process associated with autophagy activation. We also observed higher IL15 gene expression in multibacillary (MB) patients who later developed T1R during clinical follow-up when compared to MB patients who did not develop the episode. By overlapping gene expression patterns, we observed 13 common elements shared between T1R skin lesion cells and THP-1 cells stimulated with both M. leprae and IFN-γ. Among these genes, the autophagy regulator Translocated Promoter Region, Nuclear Basket Protein (TPR) was significantly increased in T1R cells when compared with non-reactional MB cells. Overall, our results indicate that IFN-γ may induce a TPR-mediated autophagy transcriptional program in M. leprae-stimulated cells similar to that observed in skin cells during T1R by a pathway that involves IL-15 production, suggesting the involvement of this cytokine in the pathogenesis of T1R.


Assuntos
Autofagia/genética , Interleucina-15/genética , Hanseníase/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Criança , Citocinas/genética , Feminino , Expressão Gênica/genética , Humanos , Interferon gama/genética , Hanseníase/microbiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae/patogenicidade , Pele/metabolismo , Pele/microbiologia , Células THP-1/metabolismo , Adulto Jovem
7.
Artigo em Inglês | MEDLINE | ID: mdl-34245541

RESUMO

BACKGROUND: Lichen planus (LP) is an idiopathic, chronic, relapsing, inflammatory, autoimmune dermatological disease. The etiopathogenesis of LP is still unclear. Autophagy is a strictly regulated lysosomal degradation pathway that is crucial for maintaining intracellular homeostasis and normal development. The dysregulation of autophagy-associated genes was recognized to increase the susceptibility to multiple diseases, including inflammation, autoimmune disorders and cancer. AIMS: Our study aimed to detect the expression of autophagy-related gene 9 b (ATG9B) in LP patients compared to normal control persons to investigate the possible role of autophagy in pathogenesis of this disease. METHODS: This case-control study included 30 LP patients and 30 age-, gender-matched healthy controls. Four millimeters punch skin biopsies were obtained from LP lesions and from the controls and they were kept in lysis solution for the stability of the studied parameters and were kept frozen at -80°C till analysis of ATG9B using real-time polymerase chain reaction. RESULTS: The level of ATG9B in lesional skin of LP was significantly decreased compared to normal control persons (P < 0.01); also, there was a non-significant relation between ATG9B level and age, sex, duration and family history among LP patients. LIMITATIONS: Limited number of patients included in our study (30 patients). CONCLUSION: Autophagy may play a role in the pathogenesis of cutaneous LP.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Líquen Plano/metabolismo , Proteínas de Membrana/metabolismo , Pele/metabolismo , Adulto , Proteínas Relacionadas à Autofagia/genética , Biópsia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Reação em Cadeia da Polimerase em Tempo Real , Pele/patologia
8.
Front Immunol ; 12: 674241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113346

RESUMO

Pathogenic mycobacteria species may subvert the innate immune mechanisms and can modulate the activation of cells that cause disease in the skin. Cutaneous mycobacterial infection may present different clinical presentations and it is associated with stigma, deformity, and disability. The understanding of the immunopathogenic mechanisms related to mycobacterial infection in human skin is of pivotal importance to identify targets for new therapeutic strategies. The occurrence of reactional episodes and relapse in leprosy patients, the emergence of resistant mycobacteria strains, and the absence of effective drugs to treat mycobacterial cutaneous infection increased the interest in the development of therapies based on repurposed drugs against mycobacteria. The mechanism of action of many of these therapies evaluated is linked to the activation of autophagy. Autophagy is an evolutionary conserved lysosomal degradation pathway that has been associated with the control of the mycobacterial bacillary load. Here, we review the role of autophagy in the pathogenesis of cutaneous mycobacterial infection and discuss the perspectives of autophagy as a target for drug development and repurposing against cutaneous mycobacterial infection.


Assuntos
Autofagia/efeitos dos fármacos , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/patologia , Dermatopatias Bacterianas/tratamento farmacológico , Dermatopatias Bacterianas/patologia , Descoberta de Drogas , Humanos , Mycobacterium
9.
Front Microbiol ; 11: 614313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519771

RESUMO

Mycobacterial disease is an immense burden worldwide. This disease group includes tuberculosis, leprosy (Hansen's disease), Buruli Ulcer, and non-tuberculous mycobacterial (NTM) disease. The burden of NTM disease, both pulmonary and ulcerative, is drastically escalating globally, especially in developed countries such as America and Australia. Mycobacteria's ability to inhibit or evade the host immune system has contributed significantly to its continued prevalence. Pre-clinical studies have highlighted promising candidates that enhance endogenous pathways and/or limit destructive host responses. Autophagy is a cell-autonomous host defense mechanism by which intracytoplasmic cargos can be delivered and then destroyed in lysosomes. Previous studies have reported that autophagy-activating agents, small molecules, and autophagy-activating vaccines may be beneficial in restricting intracellular mycobacterial infection, even with multidrug-resistant strains. This review will examine how mycobacteria evade autophagy and discusses how autophagy could be exploited to design novel TB treatment strategies, such as host-directed therapeutics and vaccines, against Mycobacterium tuberculosis and NTMs.

10.
Brain Res ; 1701: 75-84, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30055128

RESUMO

LRRK2, the gene encoding the multidomain kinase Leucine-Rich Repeat Kinase 2 (LRRK2), has been linked to familial and sporadic forms of Parkinson's disease (PD), as well as cancer, leprosy and Crohn's disease, establishing it as a target for discovery therapeutics. LRRK2 has been associated with a range of cellular processes, however its physiological and pathological functions remain unclear. The most prevalent LRRK2 mutations in PD have been shown to affect macroautophagy in various cellular models while a role in autophagy signalling has been recapitulated in vivo. Dysregulation of autophagy has been implicated in PD pathology, and this raises the possibility that differential autophagic activity is relevant to disease progression in PD patients carrying LRRK2 mutations. To examine the relevance of LRRK2 to the regulation of macroautophagy in a disease setting we examined the levels of autophagic markers in the basal ganglia of G2019S LRRK2 PD post-mortem tissue, in comparison to pathology-matched idiopathic PD (iPD), using immunoblotting (IB). Significantly lower levels of p62 and LAMP1 were observed in G2019S LRRK2 PD compared to iPD cases. Similarly, an increase in ULK1 was observed in iPD but was not reflected in G2019S LRRK2 PD cases. Furthermore, examination of p62 by immunohistochemistry (IH) recapitulated a distinct signature for G2019S PD. IH of LAMP1, LC3 and ULK1 broadly correlated with the IB results. Our data from a small but pathologically well-characterized cases highlights a divergence of G2019S PD carriers in terms of autophagic response in alpha-synuclein pathology affected brain regions compared to iPD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autofagia/fisiologia , Encéfalo/fisiopatologia , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Corpos de Lewy/patologia , /metabolismo , Masculino , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/metabolismo , alfa-Sinucleína/metabolismo
11.
Front Immunol ; 9: 1223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915584

RESUMO

Leprosy reactions are responsible for incapacities in leprosy and represent the major cause of permanent neuropathy. The identification of biomarkers able to identify patients more prone to develop reaction could contribute to adequate clinical management and the prevention of disability. Reversal reaction may occur in unstable borderline patients and also in lepromatous patients. To identify biomarker signature profiles related with the reversal reaction onset, multibacillary patients were recruited and classified accordingly the occurrence or not of reversal reaction during or after multidrugtherapy. Analysis of skin lesion cells at diagnosis of multibacillary leprosy demonstrated that in the group that developed reaction (T1R) in the future there was a downregulation of autophagy associated with the overexpression of TLR2 and MLST8. The autophagy impairment in T1R group was associated with increased expression of NLRP3, caspase-1 (p10) and IL-1ß production. In addition, analysis of IL-1ß production in serum from multibacillary patients demonstrated that patients who developed reversal reaction have significantly increased concentrations of IL-1ß at diagnosis, suggesting that the pattern of innate immune responses could predict the reactional episode outcome. In vitro analysis demonstrated that the blockade of autophagy with 3-methyladenine (3-MA) in Mycobacterium leprae-stimulated human primary monocytes increased the assembly of NLRP3 specks assembly, and it was associated with an increase of IL-1ß and IL-6 production. Together, our data suggest an important role for autophagy in multibacillary leprosy patients to avoid exacerbated inflammasome activation and the onset of reversal reaction.


Assuntos
Autofagia , Inflamassomos/metabolismo , Hanseníase Multibacilar/etiologia , Hanseníase Multibacilar/metabolismo , Adulto , Idoso , Biomarcadores , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Interleucina-1beta/metabolismo , Hanseníase Multibacilar/patologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/microbiologia , Mycobacterium leprae/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Transcriptoma
12.
Front Immunol ; 9: 806, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755459

RESUMO

For those with leprosy, the extent of host infection by Mycobacterium leprae and the progression of the disease depend on the ability of mycobacteria to shape a safe environment for its replication during early interaction with host cells. Thus, variations in key genes such as those in pattern recognition receptors (NOD2 and TLR1), autophagic flux (PARK2, LRRK2, and RIPK2), effector immune cytokines (TNF and IL12), and environmental factors, such as nutrition, have been described as critical determinants for infection and disease progression. While parkin-mediated autophagy is observed as being essential for mycobacterial clearance, leprosy patients present a prominent activation of the type I IFN pathway and its downstream genes, including OASL, CCL2, and IL10. Activation of this host response is related to a permissive phenotype through the suppression of IFN-γ response and negative regulation of autophagy. Finally, modulation of host metabolism was observed during mycobacterial infection. Both changes in lipid and glucose homeostasis contribute to the persistence of mycobacteria in the host. M. leprae-infected cells have an increased glucose uptake, nicotinamide adenine dinucleotide phosphate generation by pentose phosphate pathways, and downregulation of mitochondrial activity. In this review, we discussed new pathways involved in the early mycobacteria-host interaction that regulate innate immune pathways or metabolism and could be new targets to host therapy strategies.


Assuntos
Autofagia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Interferon Tipo I/imunologia , Hanseníase/imunologia , Citocinas/imunologia , Progressão da Doença , Glucose/metabolismo , Humanos , Interferon Tipo I/genética , Hanseníase/metabolismo , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/terapia , Mycobacterium leprae/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Transdução de Sinais
13.
Front Immunol ; 9: 518, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29643852

RESUMO

Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management.


Assuntos
Imunidade Inata , Hanseníase/imunologia , Animais , Humanos , Hanseníase/patologia , Hanseníase/transmissão , Mycobacterium leprae/fisiologia
14.
mSphere ; 2(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28875176

RESUMO

Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17-30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17-30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17-30 did not localize to M. avium-harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17-30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis, M. leprae, M. avium, etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we show that peptides derived from bovine lactoferricin (LFcin) improve the antimicrobial activity of ethambutol against Mycobacterium avium growing inside macrophages. Moreover, the d-enantiomer of a short version of lactoferricin containing amino acids 17 to 30 (d-LFcin17-30) causes intramacrophagic death of M. avium by increasing the formation of lysosomes and autophagosomes. This work opens the way to the use of lactoferricin-derived peptides to treat infections caused by mycobacteria and highlights important modulatory effects of d-FLcin17-30 on macrophages, which may be useful under other conditions in which macrophage activation is needed.

15.
Neurosci Lett ; 649: 85-92, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28411068

RESUMO

Post-operative cognitive dysfunction (POCD) is a commonly seen postoperative complication in elderly patients and its underlying mechanisms are still unclear. Autophagy, a degradation mechanism of cellular components, is required for cell survival and many physiological processes. Although propofol is one of the most commonly used intravenous anesthetics, investigations into its mechanisms and effects on cognition in aged rodents are relatively scarce. In this study, we evaluate the influence of propofol on learning and memory, and identify the potential role of hippocampal autophagy in propofol-induced cognitive alterations in aged rats. The results demonstrate that 4h propofol exposure significantly impaired cognitive performance through the inhibition of hippocampal autophagy. Diaminodiphenyl sulfone (dapsone, DDS), which was used as an anti-leprosy drug, has been found to have neuroprotective effects. We have previously demonstrated that DDS can improve surgical stress induced depression- and anxiety-like behavior. We therefore aimed to investigate the effects of DDS on propofol-induced cognitive dysfunction and associated hippocampal autophagy responses. Pretreatment with 5mg/kg or 10mg/kg body weight DDS significantly improved the behavioral disorder and upregulated the inhibited autophagic response in aged rats. Our exploration is the first to establish an in vivo link between central autophagy and cognitive dysfunction in aged hippocampus after propofol anesthesia and demonstrate that the prophylactic effect of DDS on the cognitive impairment induced by propofol involves autophagy. These findings may imply a potential novel target for the treatment in patients with propofol anesthesia-induced cognitive impairment.


Assuntos
Autofagia/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Dapsona/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Fármacos Neuroprotetores/administração & dosagem , Propofol/toxicidade , Anestésicos Intravenosos/administração & dosagem , Animais , Disfunção Cognitiva/fisiopatologia , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Ratos Sprague-Dawley
16.
DNA Cell Biol ; 36(1): 1-9, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27854511

RESUMO

The obligate intracellular bacterium Mycobacterium leprae is the causative agent of leprosy and primarily infects macrophages, leading to irreversible nerve damage and deformities. So far, the underlying reasons allowing M. leprae to persist and propagate in macrophages, despite the presence of cellular immunity, are still a mystery. Here, we investigated the role of autophagy, a cellular process that degrades cytosolic materials and intracellular pathogens, in M. leprae infection. We found that live M. leprae infection of macrophages resulted in significantly elevated autophagy level. However, macrophages with high autophagy levels preferentially expressed lower levels of proinflammatory cytokines, including interleukin (IL)-1ß, IL-6, IL-12, and tumor necrosis factor-α, and preferentially primed anti-inflammatory T cells responses, characterized by high IL-10 and low interferon-γ, granzyme B, and perforin responses. These anti-inflammatory T cells could suppress further induction of autophagy, leading to improved survival of intracellular M. leprae in infected macrophages. Therefore, these data demonstrated that although autophagy had a role in eliminating intracellular pathogens, the induction of autophagy resulted in anti-inflammatory immune responses, which suppressed autophagy in a negative feedback loop and allowed the persistence of M. leprae.


Assuntos
Autofagia , Retroalimentação Fisiológica , Macrófagos/citologia , Macrófagos/imunologia , Mycobacterium leprae/fisiologia , Animais , Citocinas/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Linfócitos T/imunologia
17.
J Infect Dis ; 214(2): 311-20, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27190175

RESUMO

Cytosolic detection of nucleic acids elicits a type I interferon (IFN) response and plays a critical role in host defense against intracellular pathogens. Herein, a global gene expression profile of Mycobacterium leprae-infected primary human Schwann cells identified the genes differentially expressed in the type I IFN pathway. Among them, the gene encoding 2'-5' oligoadenylate synthetase-like (OASL) underwent the greatest upregulation and was also shown to be upregulated in M. leprae-infected human macrophage cell lineages, primary monocytes, and skin lesion specimens from patients with a disseminated form of leprosy. OASL knock down was associated with decreased viability of M. leprae that was concomitant with upregulation of either antimicrobial peptide expression or autophagy levels. Downregulation of MCP-1/CCL2 release was also observed during OASL knock down. M. leprae-mediated OASL expression was dependent on cytosolic DNA sensing mediated by stimulator of IFN genes signaling. The addition of M. leprae DNA enhanced nonpathogenic Mycobacterium bovis bacillus Calmette-Guerin intracellular survival, downregulated antimicrobial peptide expression, and increased MCP-1/CCL2 secretion. Thus, our data uncover a promycobacterial role for OASL during M. leprae infection that directs the host immune response toward a niche that permits survival of the pathogen.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Viabilidade Microbiana , Mycobacterium leprae/fisiologia , Células de Schwann/microbiologia , Células Cultivadas , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hanseníase/microbiologia , Hanseníase/patologia , Macrófagos/microbiologia , Mycobacterium bovis/fisiologia
18.
s.l; s.n; 2016. 10 p. tab, graf.
Não convencional em Inglês | SES-SP, HANSEN, HANSENIASE, SESSP-ILSLPROD, SES-SP, SESSP-ILSLACERVO, SES-SP | ID: biblio-1095379

RESUMO

Cytosolic detection of nucleic acids elicits a type I interferon (IFN) response and plays a critical role in host defense against intracellular pathogens. Herein, a global gene expression profile of Mycobacterium leprae-infected primary human Schwann cells identified the genes differentially expressed in the type I IFN pathway. Among them, the gene encoding 2'-5' oligoadenylate synthetase-like (OASL) underwent the greatest upregulation and was also shown to be upregulated in M. leprae-infected human macrophage cell lineages, primary monocytes, and skin lesion specimens from patients with a disseminated form of leprosy. OASL knock down was associated with decreased viability of M. leprae that was concomitant with upregulation of either antimicrobial peptide expression or autophagy levels. Downregulation of MCP-1/CCL2 release was also observed during OASL knock down. M. leprae-mediated OASL expression was dependent on cytosolic DNA sensing mediated by stimulator of IFN genes signaling. The addition of M. leprae DNA enhanced nonpathogenic Mycobacterium bovis bacillus Calmette-Guerin intracellular survival, downregulated antimicrobial peptide expression, and increased MCP-1/CCL2 secretion. Thus, our data uncover a promycobacterial role for OASL during M. leprae infection that directs the host immune response toward a niche that permits survival of the pathogen.


Assuntos
Humanos , Células de Schwann/microbiologia , Células Cultivadas , Perfilação da Expressão Gênica , Células Epiteliais/microbiologia , Viabilidade Microbiana , Interações Hospedeiro-Patógeno , Técnicas de Silenciamento de Genes , Hanseníase/microbiologia , Hanseníase/patologia , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Mycobacterium bovis/fisiologia , Mycobacterium leprae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA